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Abstract "

) This paper an es properties associated with a simple yet effective way to exploit parallel
processors i9/discrete event simulations: averaging the results of multiple, independent replications
that are rug, in parallel, on multiple processors. We focus on estimating expectations from termi-
nating si nlations, or steady state parameters from regenerative simulations. We assume that there
is a GP.Urtime constraint, t, on each of P processors. Unless the replication lengths are bounded,
one must be willing to simulate beyond any fixed, finite time t on at least some processors in order
to always obtain a strongly consistent estimator (as the number of processors increases). We
therefore consider simulation experiments in which t is viewed as either being a strict constraint,
or a guideline, in which case simulation beyond time t is permitted. The statistical properties, in-
cluding strong laws, central limit theorems, bias expansions and completion time distributions, of
a variety of estimators obtainable from such an experiment - :-erived. We propose an unbiased
estimator for a simple mean value. This estimator requires pre-selecting a fraction of the processors.
Simulation beyond time t may be required on a pre-selected processor, but only if no replications
have yet been completed on that processor. -
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1. Introduction

Discrete event simulations often require large amounts of computer time in order to produce sta-

tistically accurate estimates. This is particularly true of queueing network models of manufacturing,

communications and computer systems. Such simulations therefore represent an important po-

tential application for parallel processors. Distributed simulation, or the execution of a single re-

alization of a stochastic process on multiple cooperating processors, has recently been the focus of

a good deal of research. Fujimoto [11] contains an excellent introduction to this topic including

a discussion of why distributed simulation is difficult, a description of a /ariety of synchronization

techniques, and a literature review. For further surveys and a represertative sample of research in

this area see [27], [31], [29], [35], or [36]. While significant speeduPs have been achieved in dis-

tributed simulations of specific, specially structured queueing syste'ns (see, e.g., [10], [17], [24],

[28], or [38]), in our opinion, distributed simulation has not yet proven to be an effective general

purpose technique for the type of complex models that typically arise in practice.

However, there is a simple alternative to distributed simulation that easily takes advantage of par-

allel processing technology: running multiple independent replications of the model, in parallel,

on multiple processors and averaging the results of at the end of the runs. The method can po-

tentially be applied to any model and does not require advanced parallel processing hardware, e.g.,

it can be used on a collection of workstations attached to a local area network. Heidelberger [18]

developed a simple model to compare the statistical efficiency (specifically the mean squared errors)

of these two approaches for estimating so-called steady-state quantities. This analysis showed,

qualitatively, that the parallel replications approach is statistically more efficient than distributed

simulation provided:

1. The model's memory requirements are small enough so that it can reasonably fit into the

memory of a single processor.

2. The model can be run long enough on a single processor so that initialization bias is not sig-

nificant (compared to the standard deviation).

3. A main reason why the model must be run for long periods of time is the slow rate at which

the standard deviation decreases. 0]

We believe that these conditions are satisfied for many queueing models, e.g., networks in moderate

to heavy traffic with, say, up to hundreds of queues: such systems are difficult to simulate primarily

because the standard deviations of the point estimates are typically large (see, e.g., [37]). As
Codes

technology advances, and processors become faster and memories larger, we expect the class of ad/er
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models suitable for the parallel replications approach to become ever larger. Further statistical

properties associated with this approach for steady state estimation are considered in [14] and

[15].

When one considers the estimation of quantities arising from so-called transient, or terminating,

simulations, the parallel replications approach appears to be even more attractive. Examples of

such quantities are:

1. The expected time until a queue length first exceeds some level (given a prespecified set of in-

itial conditions).

2. The expected number of customers that can be served in a fixed time interval (again, given a

prespecified set of initial conditions).

3. The mean time to failure in a reliability model.

4. The expectation of an integral, or sum, over a cycle in a regenerative process (see [33]), e.g.,

the integral of a queue size. In this case a replication is associated with a regenerative cycle

and the parallel replications approach for estimating transient quantities can be thought of as

a parallel regenerative method (see, e.g., [7]) for estimating steady-state quantities.

Intuitively, one should be able to just turn on the parallel processor for some period of time, say

t, and average the resulting observations at the ei.d of the run. For a large number of processors,

one should be able to make t small, thereby running only a few replications on each processor.

Thus highly accurate estimates should be obtained in a very short period of time.

However, there are some potentially serious statistical problems with the parallel replications ap-

proach, especially for a large number of processors. These problems arise mainly because of the

sampling bias associated with the fixed completion time t. First of all, what should one do with

the replications that are in progress at time t? Should they be discarded, or allowed to complete?

Secondly, how should one average up the resulting observations? There are several ways this uan

be done. Does it make a difference? What are the statistical properties of the resulting estimators?

This paper studies these and related questions.

In the case of a single processor, these issues were investigated by Meketon and Heidelberger [25],

who showed that under certain circumstances it is better to complete the replication in progress at

time t. Specifically, if t is measured in units of simulated time, then in the case of ratio estimation

in regenerative simulation, the bias gets reduced from order l/t to lIt 2 by completing the regener-

ative cycle (replication) in progress at time t. In the parallel processing setting, these (and other)

issues were addressed by Heidelberger [19] who showed that some of the most obvious estimates

obtainable from parallel replication schemes are guaranteed to produce incorrect results, in the sense
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that they converge to the wrong quantity with probability one as P, the number of processors, in-

creases. In [19], other estimates with correct convergence properties were proposed and analyzed_

Associated with these estimators is a completion time penalty that arises because all, or some, of

the incomplete replications must be allowed to finish in order to reduce or remove the bias- A

subsequent paper by Glynn and Heidelberger [ 13] revisited the single processor case, obtaining finer

bias expansions for a variety of estimators and relating these expansions to the bias reducing tech-

nique in [25]. Other issues related to parallel replication schemes have also been analyzed by

Bhavsar and Isaac [1].

The present paper explores the parallel processing implications of the results in [ 13]. We generalize

and improve upon the estimators suggested in [19]. The generalization permits more than just ratio

estimation and the improvements include new estimators with shorter completion times. In addi-

tion, whereas [19] considers asymptotic behavior as either t - C0 or P - Co, we analyze situations

in which both t and P approach co simultaneously. This allows us to determine, for example, the

relative rates at which t and P must grow in order to obtain valid confidence intervals when one

discards all replications in progress at time t. Since, in reality, we never actually have an infinite

number of processors, these results should be interpreted as determining how large t needs to be,

qualitatively, for a given, large, number of processors.

The paper is organized as follows. In Section 2, we introduce notation and, in the interest of

keeping the paper self-contained, review the most relevant results from [13] and [19]. Section 3

considers the estimation of a simple mean value, while Section 4 considers the estimation of a

nonlinear function of a vector of simple means, e.g., a ratio of two mean values. Completion time

results associated with the various estimators are derived in Section 5, and the results are summa-

rized in Section 6.
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2. Notation and Review

We let P denote the number of processors. We assume that processors are identical and that, si-

multaneously, each processor runs multiple replications of the simulation. The output of repli-

cation j on processor i is a random variable (r.v.) XA'. The goal of the simulation is to estimate

# = E[Xjj]. We let -rij denote the (random) amount of (computer or reai) time required to run rep-

licationj on processor i and let S(n) = -il+ + ":i, be the time that it takes processor i to complete

n replications (also let S(O) = 0). In a simulation of length t, processor i can complete Ni (t) repli-

cations where N(t)=sup(n>_O:S,(n) <t). We make the reasonable assumption that

{ (Ai'1 ri), i = 1, .... , P.]_> } are i.i.d. (independent and identically distributed) r.v.'s. Under this

assumption {N. (t), t > 0}, i = 1, ... , P are i.i.d. renewal processes (see [5] or [34]).

Notice that there are many possible ways to estimate Iz from such an experiment. One could esti-

mate g based on simulating a fixed total number of replications, or based on a completion time

constraint t as in the above setting. While other stopping rules are also possible, we will only

consider estimators based on a completion time constraint, which represents a realistic and practical

method for running such parallel replication schemes. In [19] a variety of such estimators for y

were considered and analyzed. The first, and perhaps the most obvious, thing to do is simply av-

erage all of the observations that have completed by time t. This results in the.following estimate:

P IV,)

A 1P, t) i=1 j=1
A.(V t)- (2.1)

N (t)

In [19], it was shown that while t.-00o~ Aq t) =,u almost surely (a.s.),p (, t)v is tyially not

ZXA

equal to y, in fact lim u l(P, t) =,u + O(l/t) a.s. In other words, if one attempts to estimate #u by
P-00o

running a very large number of processors for a short amount of time, then the estimate need not

converge to u. On the other hand, if one completes all the replications in progress at time t, then

the estimate

'U2(P t) - (2.2)

2. (t) + R
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has the property that -im0 12(p, P)--li0n m 2(P, 1)= g& a.s. The difference in asymptotic behavior
(as P -+ oo) between 91(P, ) and J2(P, t) is due to the ratio form of the estimates and the fact that

(Ni (t) + 1) is a stopping time and therefore by Wald's equation (see page 186 of [20]), the limit of

i/P times the numerator of Equation 2.2 converges to E[NAI(t) + l]E[Xij] while 1/P times the de-

nominator converges to E[NI (t) + 1]. Thus the limiting ratio is independent of t and produces the

desired result. Since N (t) is not a stopping time, this argument cannot be applied to it)(P, t. The

price to be paid for this consistent estimation of I is an increased completion time, which was

shown to grow as order In(P) in [19] under a variety of distributional assumptions on "rij .

This discussion shows that for the estimators described above, one must simulate beyond time t in

order to obtain strong consistency as P -+ co We next show that no matter what estimator is used,

one cannot expect to always get the right answer by simply setting a fixed, finite completion time
A

and "throwing processors" at the problem. More specifically, suppose t is given. Let OX(P, t) be

any estimator for E[X] that can be constructed from information obtained in the interval [0, t],
A A

i.e., Ox(P, t) is a function of {(X,,, ! N, (t), i= 1, ... , P}. We require Ox(P, t) to be a universally
A

valid estimator in the sense that lim Ox(P, t) = E[Xj] a.s. regardless of the distributions of Xj and
P-co

T ,. Suppose now that P(-r > t} > 0 and define Yij = Xij if T! < t and Y,, = Xij + I if -ri > t. Then
A A

E[X~j] o E[Yj], however Ox(P, t) = 0 (P, t) since

((Xi), 'ij), j:< Ni (t), i = 1..., P} = ((Yij, rij), < Ni (t), i= 1,P...,P}. Therefore
A A A

E[Xj] = im OX(P, t) oim O(P, t)0 E[Yj], i.e., 0 (P, t) is not consistent for (Yij, -ii). Thus no
P-00o P-c0

such universal estimator exists, and one must be willing to simulate beyond time t on at least some

processors in order to obtain a universally valid estimator. This paper will define and analyze the

properties of such a class of estimators.

Before defining these estimators, we need to review some results from [13] for the case of a single

processor. To prevent introducing new notation, we keep the processor subscript i, even though

it is not needed in the rest of this section. Define !1 (0) =0 and for any n __ 1, define
n

(n) -- E Xjln. For the case of a single processor, the properties of X (Ni (t)) were studied in detail

in [13]. The basis for determining these properties is the relationship

E[X (NI ())] = E[XI ; Til 
<5 t] = - E[Xi ; Til > t] (2.3)

where, for a real-valued r.v. Y, E[Y; A] denotes E[YI1(A)] and I(A) denotes the indicator of the

event A. This relationship depends on the fact that, given NI (t) = k, (XII,... , XAk) are exchangeable

r.v.s. Equation 2.3 has appeared in Pathak [30] and Kremers [21] in the context of survey sam-

pling from a finite population. Kremers also states the result for the so-called infinite population

case which corresponds to our probabilistic setting (for a single processor). A special case of
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Equation 2.3 when X= ., appears on page 93 of Ross [32]. From Equation 2.3, bias expansions

can be obtained. For example (Corollary 2.5 of [13]), if E[IXj[I] < oo and E[IXjr 1iPI] < 00 for

some p > 0, then E[I (N (1))] = u + o(t-P). Similarly (Corollary 2.6 of [ 13]), if E[ I Xj1e°'0 ' I ] < 00

for some 6 > 0, then E[ 1 (N1 (t))] = # + o(e-0t).

Equation 2.3 also suggests an unbiased estimate of ji as follows. Defining N () - max(l,, , (t)),

then E[,'( (,,))] = t. In order to form this estimator, one must complete the replication in

progress at time I only if no replications have yet been completed (i.e., if N, (t) = 0, or equivalently,

Tj > t). Strong laws and central limit theorems for both Y' (N, (t)) and T, (N, (t)) follow directly from
standard results in probability and renewal theory: For example,

T ( X(Nt))-p ) a cE[rij]1I 2 N(O,1) (2.4)

as t -- oo where - denotes convergence in distribution, N(a,b) denotes a normally distributed r.v.

with mean a and variance b, and a2 is the variance of X,, (assumed finite). Drawing on the results

of Cho%, Hsiung and Lai [3], uniform integrabilitq and moment con ergence associated with these

central limit theorems are given in [13]. For example, Theorem 4.2 of [13] states that if

E[ I XI P+ 1+' ] < . and E[-,j2P+6] <00 for some p > 0 and 6 > 0, then

lim E[ IJ ( YJ (N; (t) - AL) IP] = E[ I N(0, cr2E[Ti])I P ]. (2.5)

In addition, multidimensional versions of the central limit theorem in Equation 2.4 are also x alid.

These can be combined with Taylor series expansions and the uniform integrability of Equation

2.5 to obtain central limit theorems and bias expansions for nonlinear function estimation.
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3. Parallel Estimators for a Simple Mean

We now build on the results described in the previous section to derive and analyze three alternative

parallel processing point estimators for a simple mean. The first estimator, "I(P,t), has the property

that, like AI(P, t), it can be formed at exactly time t. We define

P
1(t)=l >T(jt) (3.1)

i=1I

Notice that while "Z(P,t) and Al(P, t) both make use of the same underlying observations, these

observations are combined differently. Our first result concerns the expected value and convergence

properties of -!(P,t).

Proposition 3.1

IfO<-.<co a.s. and ifE[IX, 1i]<oo, then

1. lim 7(P,t) =It a.s.
t,--oo

2. If there exists a finite constant B such that -rij B a.s. and if B < t, then

E[TF(P,t)] = # and lim "f(P,t) = a.s.
P-oo

3. If E[IXijzijk I ] < co for some k > 0,

then E[TT(P,t)] = u + o(t-k) and ima "7(P,t) = tu + o(-k ) a.s.,
P-oo

i.e., lim tklim 17(P,t)-,uI =0 a.s.
t-* P-0oo

4. If FrIXije0 rlI]] < co for some 0 > 0, then

E[j!(P,t)] = # + o(e -Ot) and im -i(P t)= j. + o(e - O') a.s.
P-.oo

5. IfE[IX,,I +]<o for some 6>0, and if lim tp=oo, then
P-00o

7!(P, tt,) - IL as P -- oo.

Proof: Result (1) follows by ordinary strong laws for cumulative processes since P is fixed. Results

(2), (3), and (4) essentially follow from the strong law of large numbers and Equation 2.3, see

Corollaries 2.1, 2.5 and 2.6 of [13], respectively. For (5), by Chebyshev's inequality

P(I[7(P, tp)-j > c} < E[lXT(N(tp))- i[]/c which converges to zero by Corollary 3.2 of [13].

Since II(P,t) is biased for finite t, we next define an unbiased estimate of j in the parallel setting to

be

3. Parallel Estimators for a Simple Mean 7



P

7i1(P,t) - P (3.2)
P i=1

This estimator may require simulating past time t since it requires completing at least one repli-

cation on each processor- Specifically, one must complete the replication in progress on processor

i if and only if N, (t) = 0. The convergence properties of this estimator are stated next. The proof

of Proposition 3.2 is not given since it is basically the same as that of Proposition 3.1.

Proposition 3.2

If 0 < -ij < o a.s. and if E[IX1j[] <o, then

1. E[7i(P,t) =/,u

2. .rn i 1(P,t) = -- m Yo(P,t) = ,4 a.s.
t-co P-c0

3. If E[IX , 1+6] < co for some 6 > 0, and if lrn tp=c o, then
P-00

" l(P, tp) -ja as P -+ oo.

The third estimator we consider is also unbiased but has a shorter completion time than that as-

sociated with 1 (P,t). Since E[ji(P,t)] = E[XjlI(ril < t)], in order to obtain an unbiased estimate

of ju = E[X], we need only estimate the remainder term E[XIl(Til > t)]. Instead of using all P

processors (as l(P,t) does), we use P pre-selected processors to estimate the remainder term.

Thus, rather than requiring that at least one replication be completed on all processors, we only

require at least one replication on the P pre-selected processors. We assume that these pre-selected

processors are labeled i , ... , P1. Formally, this estimator can be written as

P,

, )--(P,t) + 1 ZXil I(>t) . (3.3)

Notice that if P, = P, then 2i2(P, P1, 1) = 7i1(P,t), whereas if P = 0, then (by convention)

"2 (P, P1 , t) = "(P,t). Proposition 3.3 describes the convergence properties of i2(P, P1, t). Note that

the P processors must be pre-selected: an unbiased estimate would not result, e.g., by taking the

first P uncompleted replications that actually do complete.

Proposition 3.3

If 0 < Tii < oo a.s. and if E[ I Xii] < oo, then

3. Parallel Estimators for a Simple Mean 8



1. [ 4.(P, PI, t)]=i,

2. nim "1(P, Pl, t) =it a.s.

3. If P --*co and P "* co, then

;12(P, Pl, t) -,u a.s.

4. !fE[I Xi l+ 6]< cforsome 6>O, im tp=oo, and lim P, =oo, then
P-o P-oo

2(P, Pl, tp) - 4 as P - oo.

We next turn to central limit theorems for these estimators. Define t- E[XII(-ril -t)],

2 -a[~(1 ()] n 2(tar(t) Var[X (Ni (t))], and a t) -Var[X (N1 (t))]. We begin with central limit theorems for 7(P,t)

and "i(P,t) as either P --+ oo, or t -+ co. These are applications of well known results in applied

probability.

Proposition 3.4

If 0 < -r < oo a.s. and ifa 2 < o, then

1. If a2(t) < o then,

xfP'(j(P,t) - -) c(t)N(0,l) as P - 0o,

2. If a2(t) < 0o then,

('-(P,t) -ji) -(t)N(0,l) as P -oo,

3. If E[-r1j] < oo then,

J- (-(P,t) - ju) - aE[T1 ]l12N(O,1) as t-* 00,

4. If E[rij] < oo then,

't ( I (P,t) - A) - aE[r 1 /j]/2N(O, 1) as t- 00.

In order to obtain central limit theorems as both t - co and P --oo simultaneously (triangular ar-

ray central limit theorems), we first note that if E[ I X 1 5+6] < 0o and E[T, 4+ 6] < 0o for some

6 > 0, then by Equation 2.5 (Theorem 4.2 of [ 13])

tm ta 2 (t) = ar (t) = E[Tij] a
2  (3.4)

t--00 t--4o0

Proposition 3.5

If 0 < Tii < 00 a.s., a2 > 0, E[ I Xj 15+ 6] < 00, 0 < E[rij4+6] < oo for some 6 > 0, and ir tp = 0o,

then

1. ._Jp ( 7(P,tp) - p ) a E[Tij]T 12 N(O,1) as P-.0,

3. Parallel Estimators for a Simple Mean 9



2. asP

Proof. We will show that the conditions of Lyapounov's Theorem (Theorem 7.3 in [2]) are satis-

fied. For j!l(P,1p), we first show that fP_(j!(P,1p) -t)fi;(ttp) N(0,1) from.which the result fol-

lows by Equation 3.4. In our case, Lyapounov's condition reduces to showing that

E[ IA i(N (t)) _ I12+ ] 0 (3.5)
ptI2 2 +-r(t,)

as P - oo for some small & > 0. However this follows by multiplying the numerator and denomi-

nator of Equation 3.5 by J77 2+r and applying Equations 2.5 and 3.4. The proof for 7(P,t,) is

similar. However, Lyapounov's Theorem applies to sums of r.v.'s with means 0, which accounts

for the centering term being y rather than A. 0

We next consider when the centering term, ltp, in the central limit theorem for 7!(P,t,) can be re-

placed by /i, the desired quantity. The ability to replace up by y depends on the relative growth

rates of P and tp, as well as moment conditions on X and "T. If the number of processors P grows

too quickly with respect to the time constraint tp, then the residual bias remains significant and the

central limit theorem cannot be used to form confidence intervals for g. We next give precise

conditions under which the desired central limit theorem is obtained.

Proposition 3.6

Under the same conditions as in Proposition 3.5,

-Pt-p(" (P,tp) - # )-="a E[¢,,'1 N(O,1) as P -. ,

provided either:

1. E[IXij Tjk]<oo and P=O(tp2k-l), or

2. Ef I Xi e 'TJ] < o. for some 0 > 0, and P = O(e20 tp ltp).

Proof.- For part (1), since Proposition 3.5 is valid, by Theorem 4.1 of [2], it suffices to show that

-p- Ilt - IL --+ 0. But by (3) of Proposition 3.1, tp1 k I - I -* 0, from which the result fol-

lows. The proof of part (2) is similar. 0

Note that the maximum allowable number of processors increases (with respect to the time con-

straint) with increasing moment assumptions on T l. For example, by the Cauchy-Schwarz Ine-

quality, E[ IX~j[-ij k'1<E[Xij2]1 /2E[rij2 ,]1/2 < o for k=2 under our base assumptions in

Proposition 3.5. Thus, under these base assumptions, we require P = O(tp3), or equivalently,

3. Parallel Estimators for a Simple Mean 10



tp= 2(Pl 13) (a sequence ap = i(bp) if there exists constants C and P0 such that ap > Cbp for all

P> P0 ).

We next consider central limit theorems for 2(P, P1 , ). The primary intent of this analysis is to

shov that the the growth restrictions (1) and (2) of Proposition 3.6 can be loosened considerably

(since i2(P, P1, t) is unbiased) even if P1/P is very small. Define Ri(t) m Xil(-ril > 0.

Proposition 3.7

1. Under the same conditions as in part (3) of Proposition 3.4,

Pt ( 2 (P, P1, t) - ,) - aE[,] 12N(0,1) as t -- 00.

2. Let P and P--+oo in such a way that P1/P=a for some a (O<a:< 1). Let

-2 2
(t) - a (t) - 2,u, E[R,(t)] + Var[Rt(t)]/a. Under the same conditions of part (1) of Proposi-

tion 3.4

Jx'i 2(P, P, t) - ;) 2(t) N(0,l) as P - oo.

3. Let tp, P and P -o in such a way that P[P =a for some a (O< a _ 1). Assume the con-

ditions of Proposition 3.5. Then

,P-p (! 2(P, Pl, tp) - A) - a ECr 1]1 /2 N(0,1)

4. Let tp, P and P -). 0o in such a way that P11P = ap -- 0. Assume the conditions of Proposi-

tion 3.5. Then

P/J1P ( 2(P, P1, tp) - a E[-r1 ]' /2 N(O,1)

provided either:

a. E A 41 ]< o and P/P =Q(tpk-i) for somek> 1, or

b. E[X e '] < o and PIP, = O(e0'Pltp) for some 0 > 0.

Proof.- For part (1), Because of Equation 3.3 and (3) of Proposition 3.4, the result will be true

providedJ R(t) [ 0 for i = 1,... , P1.But P(7/7" I R(t) I > c, < P(mrl > t} 0 as t --+ *o. For part

(2), define Y, = aXY(N 1 (t)) + RI(t), Z, = (1 - a)Xj(N (t)), Y = 7 Y1i/P1, and Z = 7 ZjJ(P - P1).
i= I i= P, +1

Then 2(P, P1, t) = Y+ Z. Let it y= E[ YJ, yz = E[Z] and notice that u y + Az. Thus

NW(P 2(P, PI, ) - ) '( - AY) + -JT(Z -z). (3.6)

Let a2 = Var[ y] and a2 = Var[ZJ] = (I _)2a2(t). By the ordinary central limit theorem,

ji' ( 7- y) -a y N(0,1) and V(l -a)P (Z - p2 )='a2 N(O,1). Since Y'and Z are inde-

pendent, the convergence in distribution occurs jointly and the result will follow by Equation 3.6

p2vi = 2 2
provided a2 ) = /a + a2 /(l - a). But
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C2 2 -

= a Var[X(Nj (t))] + Var[R(t)] + 2aCov[X1 (N (t)), R,(t)] (3.7)

Since R,(t)AV(N (t)) = 0, Cov[XL(N, (t)), R(t)] = - tt E[RI(t)], and the result then follows by simple

calculations. Part (3) similarly follows since it is easily shown that tpo2(t,) - E[r1j ]o"2.For part (4),
adopting the above notation, since ap - 0, by part (1) of Proposition 3.5,

- = E[-]"2 N(O,1). The result will then be true provided iPt.p 1-A YIj = 0
which, in turn, is true provided Var[fP-p( - Ay)] = ptp a2 I "* 0. But

P tp a
2

PY - OP tp a 2(tp) - 2 tp, jtp E[R,(tp)] + ( tp P I P, ) Var[Ri(tp)] • (3.8)

The first term on the right hand side of Equation 3.8 converges to 0 by Equation 3.4. For the

second term, A,, --+A and tpE[R,(tp)] - 0 (provided E[ I xjI -nj < oo). For the third term, under

assumption (a), tpk Var[R,(tp)] - 0 so (tp PIP,) Var[R,(tp)] -* 0 provided tpP/P1 = O(tp ), i.e.,
P/P1 = O( ).k-1)

• The result similarly holds under assumption (b). Therefore,

Var[.,fPt (Y - Ay) ] - 0 as required. 0

Note that the central limit theorem for j,(P,t,) puts no restrictions on the relative values of P and

tp. However, in order for - (P,tp) to have a properly centered central limit theorem, a minimum

growth rate for tp with respect to P is required. In contrast, the central limit theorem for

i2(P, Pl, t) places no direct restrictions on the relative values of P and 1p, but rather requires a

minimum growth rate for tp with respect to the ratio PIP1. Note also that, for fixed t, 2(t) is a

decreasing function of a = P P. Thus there is some variance inflation by not pre-selcting all of the

processors (a = 1). However, part (4) of Proposition 3.7 shows that this variance inflation disap-

pears asymptotically provided a = ap does not approach zero too quickly with respect to tp.

In order to obtain bia., expansions for certain nonlinear functions of the various point estimators,

we need to establish aniform integrability and moment convergence of the point estimators

Proposition 3.8

Under the same conditions as in Proposition 3.5,

1. (PJi ( ( 1(P,/p) - J.))2 is uniformly integrable as P -- oo, and

lim E[(( . "(P,tp) - , ))2= 2E[-ri,]

2. If, in addition, either conditions (1) or (2) of Proposition 3.6 hold, then
(_, ,P( .(p,t,)_ A ))2 is uniformly integrable as P -, o, and

ir E[(f 'p ("7(P,t,) -. ))2" = C2E[Tij]

3. Parallel Estimators for a Simple Mean 12



3. Under the same conditions of Proposition 3.7, parts (3) or (4), (pp ( 2(P, P1, t) - ))2

is uniformly integrable as P o 0o, and

lirn E[(,fplT(Ti 2(p, p1 , tp) - ))I] =2 [,]

Proof: For part (1), by Proposition 3.5 (Fpp( "(P,tp)- u ))I _ a2E[,ij]N(O,1) 2 . Furthermore

E[( P p ( il(P,tp) - ))23 = P tp Var[P1 (P,tp)'

(3.9)

= tp 2 (tp) -, a2E[-rij]

by Equation 3.4. Therefore, the result follows by Theorem 5.4 of [2]. For part (2),

PtpE[("(P,tp)-) 2] = ptp (Var[7i(P,tp)] + (ji)- A) )

(3.10)

= lpC2(tp) + plp(Utp.u)2

The first term on the right hand side of Equation 3.10 converges to c2E[-r,,] by Equation 3.4, while

the second term converges to zero by the same argument as in the proof of Proposition 3.6.

Combining this with the convergence in distribution of Proposition 3.6. yields the result. The

moment convergence for part (3) was basically established in the proof of Proposition 3.7, and the

result then follows similarly. 0

We next state multidimensional versions of Propositions 3.5, 3.6 and 3.7. These will also be needed

in the next section for nonlinear function estimation. These results are simply shown by applying

the Cram6r-Wold device (Theorem 7.7 of [2]) to Propositions 3.5 - 3.7. We require some notation.

Let Xij= (Xij(l), ... , Xij(d)) be a d-dimensional vector valued output of replication ] on processor i

and let p (g1, ... , ud) where A, = E[X,1 (a)] and define Cab = Cov[X,3 (a), Xi,(b)]. We now define

multidimensional analogues "i(P,tp), AI(P,tp) and " 2(P, P1, t,) of 7"(P,tp), .l(P,tp) and

2(P, P1 , t,), respectively, as follows. Define X1(n) = (Xi(n, 1), ... , X(n, at)) where
n

XI(n, a) = FX 1j(a)/n. Component a of 7i(P,t,) is then defined to be
j=l

P

T(P, tp, a) (3.11)

The vectors " 1(P,tp) and 2(P, Pl, tp) are defined analogously. Let N(O,A) denote a multidimen-

sional normally distributed random vector with means 0 and Variance/Covariance matrix A.

Proposition 3.9

3. Parallel Estimators for a Simple Mean 13



Assume that the conditions of Proposition 3.5 apply to each component of Xii. Then

IpP ;( jiI (p, tp) EErij]' 12 N(O,C) as P -*0o.

The same multidimensional central limit theorem holds for -i(P,tp) and "12(P, Pl, tp) provided the

conditions of Propositions 3.6 and 3.7 -.pply to each component of the respective random vectors.

We conclude this section with a discussion of the formation of confidence intervals for ju. The

central limit theorems of Propositions 3.4 - 3.7 can be used as the basis for such confidence inter-

vals, however, in practice, the variance terms in these limit theorems are not known and must be

estimated. As usual, this presents no theoretical obstacles since the variance terms can be consist-

ently estimated (see, e.g., [7]). However, there are several ways the variance can be estimated and

the appropriate estimator depends on whether t --* oo, P - c, or t and P -+ 00. We therefore

outline the appropriate procedures for 1(P,t). Analogous results also hold for -i(P,t) and

l2(P, P1, t).

First consider the case when t remains fixed, but P --+ *o. Define

P
aP(P, t) Z ( (N (t)) - 71(P,t))2 . (3.12)

i=1

-2

Then lim ji(P, t) = 2 (t) a.s. Combining this with the central limit theorem of part (2) of Pro-
P--.oo

position 3.4, we obtain 1,/-f(~1'(P,t) - )/A1(P, t) N(0,l) as P -o (the above assumes that

0 < 2(t) < 0o). From this central limit theorem, an approximate (say) 90% confidence interval for

/ is Yl(P,t) +1 .645 a1(P, t)JF. If P is fixed and t -- o, define

p N (1)

7r(P, t) - - N T (3.13)
1= 1 (t)

and

A a2(P, t) -- P, t) T E EXj lPt 2 (.4A222

Thn r 2(P, L rp (0 P 1k~ X>i2 IP'2j (3.14)

Then t)=E[rij]a2  a.s. (assuming these terms are finite) and therefore

J'1 ((P t)a 2(P, t) _ N(O,I) as t - o. Finally, if P - 00 and tp -i oo, then

a2(P, t,) E[ri]o 2 (assuming E[ i)[ +6] < 00 and E[Tii1 
+ ] < 0o by Proposition 3.2). There-

3ore, P/ 2(,Ipl P , )irm pl Ma N(O, ).
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4. Nonlinear Function Estimation

In this section, we consider estimating a real valued nonlinear function g(p) by either g(-i(P,tp)),

g(j1I(P,tp)) or g(p2(P, P1, tp)). This problem arises in many contexts, e.g., in variance estimation
2 2_'2

where X= (Xu, Xj) (i.e., X.,(2) = Xj(l)2) and g(P) = 2 - 1. Another application is steady state

estimation in regenerative simulations in which one is interested in estimating ratios of the form

g(P) = JzIf/2. We will only consider situations in which tp, P, and P all --+ 0o. First note that since

-i(P,tp) -,u, (P,tp) p and i2(P, P1, t) - p (under the minimal moment conditions given in

Section 3), then g(Ti(P,tp)) - g(p), g( l (P,tp)) - g(p) and g( 2(P, P1 , tp)) > g(p) provided that g

is continuous at p.

Define ga = OglaxI x=P I and Gab = 0 2g/xaxa I x=,. Let Ck(/u) be the set of functions having finite

continuous derivatives of orderj forj = 0, ... , k in a neighborhood of p. We next use the standard

technique of combining central limit theorems with Taylor series expansions to obtain central limit

theorems and bias expansions for g(7i(P,tp)), g( i(P,tp)) and g( 2(P, P1, t)) (see, e.g., Chapters

27 and 28 of [6] or Chapter 2 of [23]).

Proposition 4.1

Let g E C (p) and assume the conditions of Proposition 3.5 apply to each component of X. Define

d d

' = E[rj]Y 2] ga Cab gb

a=l b=l

2
and assume 0 < a1 < 00. Let tp and P -*0o.

1. IfP 1 P=aforsomea(0<a5 1).

}P t/P g( 2(P, P1, p)) - g(P) I a" N(O, 1).

2. Jt4 p (g('i(P,tp)) - g(!ut) ) - a I N(0,1).

3. If conditions (1) or (2) of Proposition 3.6 apply to each component of Xij, then

7- (g (P,tp)) - g(u)) =  al N(O,1).

4. If PI/P = ap --* 0 and conditions (a) or (b) of part (3) of Proposition 3.7 apply to each com-

ponent of Xij, then

JPIP (g9P2(P, Pl, I)) - g(P)) 0 I N(0,1).

Proof: For simplicity of notation, we will assume that d = 1 (and use the notation of Section 3).

We will only establish results (2) and (3). the other cases and the multidimensiona1 versions can

be shown, without complications, along similar lines. Using a first order Taylor series expansion,

4. Nonlinear Function Estimation 15



write g(j!(P,tp)) = g(At1 ) + g'(p) ('!(P,tp) - At.) where p is on the line segment between Ap

and -i(P,tp). Since A, =-A and -7(P,tp) - A, p -z and therefore g'( p) - g'(i). Therefore, by

Proposition 3.5,

j/Pt ( g('(P,tP)) - g&i t)) = g'(fp) 7T7 (-7(P,tp) - Atp)

(4.1)

g'( a E[rij]'1 2 N(0,1).

For part (3), do the Taylor series about A rather than and apply the central limit theorem of

Proposition 3.6. 0l

Note that part (1) of this Proposition also applies to ",(P,tp) since j12(P, P1, tt) = 1 (P,tp) for

a = I (PI = P).

We next turn to bias expansions. These can be established under a broad variety of moment as-

sumptions and regularity conditions on the function g. For example, in the case of a single

processor, expansions for E[g(X(N,(t)))] and E[g(X(N,(t)))] were derived in [13] under the as-

sumption that the function g is bounded a.s. (and g e C2(.u), plus certain moment assumptions).

In [16], the expansion for E[g(X(N, (t)))] was shown to be valid provided that g is bounded by a

polynomial of degree r for any r> 0, i.e., Ig(X(N (t)))I < A + BIIX(N1(t)) - Ai1r (and g c C2(/),

plus somewhat different moment conditions). This will be true, e.g., provided g has bounded par-

tial derivatives of order r. For the simple case of a function of a mean of a deterministic number

of i.i.d, r v 's, Chapter 2 of [23] contains such bias expansions provided g has bounded partial de-

rivatives of order r (r > 3) and the r'th moments of the underlying r.v.'s are finite. In the interest

of simplicity, we will state the results under conditions which make the proof both simple and

transparent. Define

E[j d d

2 L L Gab Cab. (4.2)B= 2
a=l b=I

Proposition 4.2

Let g e C2(,) and assume that all of g's partial derivatives of order 2 are bounded everywhere.

Assume the conditions of Proposition 3.8 apply to each component of Xij. Suppose that

tp and P, = PI(P) - oo as P - oo.

1. E[g(p-(P,tp))] = g(p) + B/(P tp) + o(l/P tp) as P -+ o,

provided either:

4. Nonlinear Function Estimation 16



a. E[IXijIrijk]<oo and P=O(t k-l), or

b. E[ I Xj I e' u'] < 0o for some 0 > 0, and P = O(e0'Pltp).

2. E[g( l (P,tp))] = g(p) + B/(P tp) + o(I/P tp) .

3. E[g(; 2(P, Pl, tp))] = g(p) + BI(P tp) + o(l/P tp)

Proof: We will again assume that d = I and show the result for g('!(P,tp)). Using a second order

Taylor series expansion, we have

P tp (g('(P,tp)) - g(W) = g'(.t) P tp (Ti(P,tp) - + g(4) p + 2

where p is on the line segment between A and j(P,t,). The expectation of the first term on the

right hand side of Equation 4.3 equals g'(lt) P tp E[Xi1 ; tl > tp] which converges to zero under

assumptions (a) or (b). Again p = j, so the second term on the right hand side of Equation 4.3

converges in distribution to (1/2) g"(A) a2 E[-r,,] N(O,1) 2 by Proposition 3.5, so we will be done if

g"( p) Ptp (71(P,tP) _ 11)2 is uniformly integrable. But this follows since there exists a finite

constant M such that Ig"(x) I < M for all x. The proofs for jij(P,tp) and "2(P, P1 , tp) are similar,

except that the expectations of the first order term in the Taylor series expansions are identically

equal to zero since E[j1 (P,t,)] = E[P 2(P, Pl, tp)] = ft. 0

Proposition 4 2 states that (under suitable regularity conditions on g and growth restnctions on P,

P and tp) the bias goes to zero as a constant divided by the total simulation effort P x tp.

Jackknifing (see [26]) is one method that can be used to mitigate bias due to nonlinearity effects.

In [16], the jackknife is explored in the setting of a single budget-constrained processor. We intend

to study the budget-constrained jackknife estimator in the multiprocessor setting in future work.
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5. Completion Time Analysis

In this section we analyze properties of the random completion time associated with 7i2(P, PI, t) (or

'll(P,t) with P = P,). Let F(x) = P{ -rij _< x), F(x) = I - F(x) and M, = max(-l, ... , "nl ) . Let

TI(t) = max(ril, t) : 71(t) is the completion time on processor i (1 < i< P1) given the budget con-

straint t (actually budget guideline is a better term). Then

M(t, PI) = max ( T)) = max (t, Mp,) (5.1)
S<i_< P.

is the completion time of the simulation experiment. We are also be interested in the total proc-

essing time on the pre-selected processors,

P,

T(t, PI) - 7) (5.2)
i=1I

and in the number of "active" processors at time t,

P,
AQt, Pl) =- Z il|> t), (5.3)

i.e., A(t, PI) is the number of processors that are required to simulate beyond time t.

Since T(t, P1) and A(t, PI) are just sums of i.i.d. r.v.'s, their limiting behavior (as P- c) can be

described by standard strong laws and central limit theorems. Similarly, since M(t, PI) is basically

a maximum of i.i.d. r.v.'s, its limiting behavior can be derived from results in extreme value theory

(see, e.g., [22]). We will give a sampling of such results.

Consider first the number of active processors A(t, PI). Note that A(t, PI) is binomially distributed

with parameters F() and Pl. Therefore, if t remains fixed and P oo, then A(t, P1)IPI obeys a

3trong law and is approximately normally distributed with mean F(t) and variance F(t)F(t)fPI.

However, if P and tp -- oo in such a way that PFf(tp) -- a (0 < a < co), then A(tp, PI) converges

in distribution to a Poisson r.v. with parameter a (see Section V.5 of [9]). For example, if -,, is

exponentially distributed with rate A! (F(t) = e - ') and tp = (I/ ) ln(Pl/c/), then the Poisson con-

vergence is obtained.

Turning now to the total processing time on pre-selected processors, by Equation 5.2, if t remains

fixed and P, -- 00, then T(t, PI)IPI obeys both a strong law and central limit theorem. Now con-

sider the behavior as tp -, 00. Notice that T(tp, P)IPI tp is the ratio of the actual computing time
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to the planned computing time (on the pre-selected processors) and (T(tp, P1) - Pjtp)PI is the

average excess (unplanned) computing time per processor.

Proposition 5.1

If E[-rj ] < oo, then as tp 0o,

1. I T(t,,P1 ) - PItt I/P l - 0,

2. T(t,, Pj)/(tp P1) - 1.

P,
Proof: For part (1), since I T(tp, P) - P1 tp < I Ti(tp) -p I,

i=1

P(IT(tp,P) - P, tp IlIPI > -< E[IT(tp, P) - P tp I]/(PI C) :- E[ Ti(tp) - tp I]i

(5.4)

f (x -t,) dF(x)i£f x dF(x)i.

But the right hand side of Equation 5.4 converges to 0 since EC-1 ] < 00. The proof of part (2) is

similar. 0

Notice that the convergence in Proposition 5.1 is still obtained even if P - 00 along with tp. Thus

for large tp, no matter how many processors there are, the ratio of actual computing to planned

computing converges (in probability) to one.

We now turn to the completion time. We assume that F is in the (maximum) domain of attraction

of a (finite) extreme value distribution, i.e., there exist constants an and b, and a finite r.v. X such

that an(M, - b,) - X*. For example, for the exponential distribution with parameter 2, a, = 2,

b, = ln(n)I2 and P{X* < x) = exp( - e- x ). In addition, in this case there is a well known closed
n

form expression for E[M,] : E[Mn] = (1/2) tt, where H, = 5 (Ili) ; In(n).

Proposition 5.2

If a(M, - b,) X, then

1. If lim ap, (tp- bp)= - oo, then

ap(m(t, PI) - b) X*

2. If lim ap (tp-bpl)=a(-oo<a< o), then
PI -00

ap, (M(tp, PI) - bpl) =i max(a, X).

3. If lim ap (tp - bp) =+ oo, then

P{M(tP, pl) = P - I.
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Proof: For part (1), we will show ap (M(tp, P1) - Mp) - 0.

P( I ap(M(tp, Pl) - Mp) I > c) < P{Mpi < tp} = P{ap,(Mp - bp,) < ap,(tp, - bp,)} - 0. (5.5)

Part (2) follows from the continuity of the maximum operator. For part (3)

P(M(tp, P1) = tp) = P{Mp < tp) = P{ap(Mp, - bp1) < ap(tp, - bp)) -* 1.0 (5.6)

Notice that part (1) of Proposition 5.2 will typically apply if tp remains fixed, in which case

M(tp, Pl) inherits the limiting distribution of M.

We next consider the combined implications of Propositions 3.7 and 5.2 in a particular case.

Suppose -rq has an exponential distribution with mean 1. Let tp = #? ln(PI). For / < 1, part (1) of

Proposition 5.2 applies, so E[M(tp, Pl)]z ln(P1). For fl> 1, part (3) of Proposition 5.2 applies, so

E[M(tp, P1)],_-te = fl ln(Pl). Now if Xij is bounded, then the moment condition of part (4) of Pro-

position 3.7 is satisfied for 0 < 1. Thus, in order for "i2(P, Pl, 1p) to obey the proper central limit

theorem, we must have PIP1 = O(e9'tItp), i.e., P < APl l+Of1(3 ln(Pl)) for some contant A. Now

let P = P1Il+Ofl(p ln(Pl)) and suppose we were to use 7i(P,tp) (i.e., we insist on at least one repli-

cation on all processors). The expected completion time associated with ",(P,tp) then grows like

(I + 0/3) In(Pl) - In(O In(P|)). For 01fl I, the expected completion time using ill(P,tp) is then

nearly twice that when using 7 2(P, Pl, tp). However, for 0-i and P > 1, the ratio of the expected

completion times is approximately (1 + I)//3.1 for large /f. Note that in this case, the difference

in expected completion times basically grows like ln(PI).

The above analysis has considered non-degenerate limits for A(tp, P1), T(tp, P1) and M(tp, Pl).

Clearly, if tp --+ oo very quickly, then A(tp, P)) = 0, T(tp, PI) = tp P, and M(tp, Pl) = tp with high

probability (see, e.g., part (3) of Proposition 5.2). We conclude this section by analyzing the con-

vrergence rates of these r.v.'s for large tp in more detail.

Proposition 5.3

Let ELri +2] < 0o for some k > 0 and rn 0 and let Pl =O(pk) Then as lp o

1. Un Ipm+2 E[A(tp,PI)] = 0.

2. lUn tpm+ E[T(tp, P1) - tpPl] = 0.P1 .oo

3. lUn tpm Var[T(tp, Pl)] = 0.
P, -- 00

4. lUn tpm12 E[M(tp, Pl) - tp] = 0.
P! -00
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Proof: For part (1),

pm+2p T,(p tm+k+2Ttp m + 2 E[A(tp, Pl)] , tp+pF(P - Cp~ +f(tP) -, 0 (5.7)

by exercise 15 on page 46 of [4]. For part (2), arguing similarly as in Proposition 5.1,

t1pM+IE[ I T(t,,, Pl) - P1 tt 1] < tpm+lp1 E[ I Ti(tp) - tp I] 5 Ctpm+l+kE[ I T(tp) - tl 1]-0 (5.8)

by Corollary 2.8 of [13]. For part (3), Var[T(tp, Pl)] = P1Var[T(tp)] and the result then follows

along similar lines by showing that tpm+kVar[Ti(tp)] --* 0. For part (4)

2' P1 -1 va[-']1; 5 9

tPmI2E[M(tl, P1) - tt ] + t - I Var[T(tp) 1/2 (

by the global bound (Equation 4.2.6) on page 59 of [8]. The result then follows similarly. 0

The analog of Proposition 5.3, under moment generating type assumptions on -, , is stated below.

Its proof is essentially identical to that of Proposition 5.3.

Proposition 5.4

Let E[TLj2 e0 ] < oo for some 0 > 0 and let P =O(eO0t1') where 0<01 _< 0. Let 02=0 - 0. Then

as tp.-* oo :

1. lim tp2 e°2P'E[A(tp,P)] = 0.
PI -co

2. lim tp e2tp E[T(tp, P)- tpPi] = 0.

3. lim e° 2'P Var[T(tp, P,)] = 0.

4. im e0 2 tpI2 E[M(tp, P.)- tp] = 0.
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6. Summary

This paper has analyzed properties associated with a simple yet effective way to exploit parallel

processors in discrete event simulations: averaging the results of multiple, independent replications

that are run, in parallel, on multiple processors. We assumed that there was a CPU time constraint,

t, on each of P processors. However, we showed that, unless the replication lengths are bounded,

one must be willing to simulate beyond any fixed, finite time t on at least some processors in order

to always get the right answer. The statistical properties of a variety of estimators were then ex-

plored. Limit theorems were obtained for these estimators when either the number of processors

or the CPU time constraint approaches infinity. In addition, central limit theorems and bias ex-

pansions were obtained when both of these parameters simultaneously get large. In this case, rel-

ative growth rates for P and t were determined in order for the estimators to have properly centered

central limit theorems. For example, if one insists on never simulating beyond time t (and using

the estimator "7(P,t)), then P must grow rather slowly with respect to t. On the other hand, one

can pre-select P (0 < P < P) of the processors and simulate beyond time t on a pre-selected

processor if and only if no replications have yet been completed on that processor. This results in

the unbiased estimator 2(P, P1, ). While one can pre-select an asymptotically negligible number

of processors (i.e., P,/P --* 0), this places growth restrictions on the relative values of t and P1/P that

may be difficult to identify in practice.

A sensible practical approach is to pre-select a fixed fraction a of the processors. While there is

some variance inflation for large P and finite values of t (as opposed to pre-selecting all the

processors), this inflation will be modest provided that t is not too small with respect to the dis-

tribution of -zj and a is not too close to 0. As t-* oo, there is no (asymptotic) variance inflation.

In addition, for large values of t, provided P1 is not too large, T(t, PI), the simulation experiment's

completion time, is equal to t with sufficiently high probability so that Var[T(t, P1)] -* 0 quite

rapidly.
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Abstract

This paper analyzes properties associated with a simple yet effective way to exploit parallel
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cluding strong laws, central limit theorems, bias expansions and completion time distributions, of
a variety of estimators obtainable from such an experiment are derived. We propose an unbiased
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